Extensions 1→N→G→Q→1 with N=C22 and Q=C5⋊Q16

Direct product G=N×Q with N=C22 and Q=C5⋊Q16
dρLabelID
C22×C5⋊Q16320C2^2xC5:Q16320,1481

Semidirect products G=N:Q with N=C22 and Q=C5⋊Q16
extensionφ:Q→Aut NdρLabelID
C221(C5⋊Q16) = (C2×C10)⋊Q16φ: C5⋊Q16/C52C8C2 ⊆ Aut C22160C2^2:1(C5:Q16)320,678
C222(C5⋊Q16) = Dic10.37D4φ: C5⋊Q16/Dic10C2 ⊆ Aut C22160C2^2:2(C5:Q16)320,677
C223(C5⋊Q16) = (C2×C10)⋊8Q16φ: C5⋊Q16/C5×Q8C2 ⊆ Aut C22160C2^2:3(C5:Q16)320,855

Non-split extensions G=N.Q with N=C22 and Q=C5⋊Q16
extensionφ:Q→Aut NdρLabelID
C22.1(C5⋊Q16) = C40.7Q8φ: C5⋊Q16/C52C8C2 ⊆ Aut C221604C2^2.1(C5:Q16)320,51
C22.2(C5⋊Q16) = C10.29C4≀C2φ: C5⋊Q16/Dic10C2 ⊆ Aut C2280C2^2.2(C5:Q16)320,96
C22.3(C5⋊Q16) = (C2×C10).Q16φ: C5⋊Q16/Dic10C2 ⊆ Aut C22160C2^2.3(C5:Q16)320,671
C22.4(C5⋊Q16) = C4⋊Dic5⋊C4φ: C5⋊Q16/C5×Q8C2 ⊆ Aut C2280C2^2.4(C5:Q16)320,10
C22.5(C5⋊Q16) = C4⋊C4.230D10φ: C5⋊Q16/C5×Q8C2 ⊆ Aut C22160C2^2.5(C5:Q16)320,597
C22.6(C5⋊Q16) = C20.31C42central extension (φ=1)320C2^2.6(C5:Q16)320,87
C22.7(C5⋊Q16) = C2×C10.D8central extension (φ=1)320C2^2.7(C5:Q16)320,589
C22.8(C5⋊Q16) = C2×C10.Q16central extension (φ=1)320C2^2.8(C5:Q16)320,596
C22.9(C5⋊Q16) = C2×Q8⋊Dic5central extension (φ=1)320C2^2.9(C5:Q16)320,851

׿
×
𝔽